EAW KF850zR Portable Speaker User Manual


 
Eastern Acoustic Works One Main Street Whitinsville, MA01588 tel 800 992 5013 / 508 234 6158 fax 508 234 8251 www.eaw.com
EAW products are continually improved. All specifications are therefore subject to change without notice. PRELIMINARY January 2004
KF850zR Specifications group · S
preliminary
INPUT PANEL
KF850zR
WHITINSVILLE, MA USA
S/N
MANUFACTURED UNDER ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,996,728; 6,009,182; 6,016,353; 6,094,495; 6,118,883
PIN 1--...NC
PIN 1+...NC
PIN 2--...LOW--
PIN 2+...LOW+
PIN 3--...MID--
PIN 3+...MID+
PIN 4--...HIGH--
PIN 4+...HIGH+
NEUTRIK
NL8 MPR
NEUTRIK
NL8 MPR
NOTES
TABULAR DATA
1. Primary Measurement/Data Processing System: FChart: proprietary EAW software.
2. Secondary Measurement System: Brüel & Kjær 2012.
3. Microphone Systems: Earthworks M30; Brüel & Kjær 4133
4. Measurements: Dual channel FFT; length: 32 768 samples; sample rate: 48 kHz; logarithmic sine wave sweep.
5. Measurement System Qualification (includes all uncertainties):SPL: accuracy +/-0.2 dB @ 1 kHz, precision +/-0.5 dB 20 Hz to 20 kHz, resolution 0.05 dB; Frequency: accuracy +/-1 %,
precision +/-0.1 Hz, resolution the larger of 1.5 Hz or 1/48 octave; Time: accuracy +/-10.4 µs, precision +/-0.5 µs, resolution 10.4 µs; Angular: accuracy +/-1°, precision +/-0.5°, resolution 0.5°.
6. Environment: Measurements time-widowed and processed to eliminate room effects, approximating an anechoic environment. Data processed as anechoic or fractional space, as noted.
7. Measurement Distance: 7.6 to 8.0 m. Data is referenced to other distances using the Inverse Square Law.
8. Volts: Measured rms value of the test signal.
9. Watts: Per audio industry practice, “loudspeaker watts” are calculated as voltage squared divided by rated nominal impedance. Thus, these are not True Watt units of energy as defined by
International Standard.
10. SPL: (Sound Pressure Level) Equivalent to the average level of a signal referenced to 0 dB SPL = 20 microPascals.
11. Subsystem: This lists the transducer(s) and their acoustic loading for each passband. Sub = Subwoofer, LF = Low Frequency, MF = Mid Frequency, HF = High Frequency.
12. Operating Mode: User selectable configurations. Between system elements, a comma (,) = separate amplifier channels; a slash (/) = single amplifier channel. DSP= Digital Signal Processor.
IMPORTANT: To achieve the specified performance, the listed external signal processing must be used with EAW-provided settings.
13. Operating Range: Range where the processed Frequency Response stays within -10 dB SPLof the power averaged SPLwithin this range; measured on the geometric axis. Narrow band
dips are excepted.
14. Nominal Beamwidth: Design angle for the -6 dB SPLpoints, referenced to 0 dB SPL as the highest level.
15. Axial Sensitivity: Power averaged SPLover the Operating Range with an input voltage that would produce 1 W at the nominal impedance; measured with no external processing on the
geometric axis, referenced to 1 m.
16. Peak Sensitivity: Highest axial SPL measured within the 20 Hz to 20 kHz bandpass with an input voltage that would produce 1 W at the nominal impedance; measured with no external
processing on the geometric axis, referenced to 1 m.
17. Nominal Impedance: Selected 4, 8, or 16 ohm resistance such that the minimum impedance point is no more than 20% below this resistance over the Operating Range.
18. Accelerated Life Test: Maximum test input voltage applied with an EIA-426B defined spectrum; measured with recommended signal processing and Recommended Protection Filter.
19. Calculated Axial Output Limit: Highest average and peak SPLs possible during the Accelerated Life Test. The Peak SPL represents the 2:1 (6 dB) crest factor of the Life Test signal.
20. Recommended High Pass Filter: This should be used to help protect the loudspeaker from excessive input signal levels below the Operating Range.
GRAPHIC DATA
1. Resolution: To remove insignificant fine details, 1/12 octave cepstral smoothing was applied to acoustic frequency response and 1/3 octave cepstral smoothng was applied to the
beamwidth and impedance data. Other graphs are plotted using raw data.
2. Frequency Responses: The variation in acoustic output level with frequency for a constant input signal of 2 volts (4 ohm nominal impedance), 2.83 volts (8 ohm nominal impedance),
or 4 volts (16 ohm nominal impedance) referenced to a distance of 1 m. For processed systems, this applies where the processor gain is 0 dB in the Processor Frequency Response graph.
3. Processor Response: The variation in output level with frequency for a constant input signal of 0.775 V = 0 dB reference.
4. Beamwidth:Average angle for each 1/3 octave frequency band where, starting from the rear of the loudspeaker, the output first reaches -6 dB SPLreferenced to 0 dB SPLas the highest
level. This method means the output may drop below -6 dB SPLwithin the beamwidth angle. Referenced to 20 m.
5. Impedance: Variation in impedance magnitude, in ohms, with frequency without regard to voltage/current phase. This means the impedance values may not
be used to calculate True Watts (see 9 above).
3-Way, Tri-Amp (LF, MF, HF)
AMP
AMP
AMP
LF
MF
HF
DSP
EQ
DELAY
HPF/LPF
SIGNAL DIAGRAM
LEGEND
DSP: User-supplied Digital Signal Processor for EQ, crossover, and delay.
HPF: High Pass Filter for crossover or Recommended High Pass Filter.
LPF: Low Pass Filter for crossover.
LF/MF/HF: Low Frequency / Mid Frequency / High Frequency.
AMP: User-supplied Power Amplifier.
XVR: Passive LPFs, HPFs, and EQ integral to the loudspeaker.